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Abstract 
 

The requirement to accurately measure subsurface groundwater flow at contaminated 
sites, as part of a time and cost effective remediation program, has spawned a variety of flow 
evaluation technologies.  Validation of the accuracy and knowledge regarding the limitations of 
these technologies are critical for data quality and application confidence.  Leading the way in 
the effort to validate and better understand these methodologies, the US Army Environmental 
Center has funded a multi-year program to compare and evaluate all viable horizontal flow 
measurement technologies.  This multi-year program has included a field comparison phase, an 
application of selected methods as part of an integrated site characterization program phase, and 
most recently, a laboratory and numerical simulator phase. 

 
As part of this most recent phase, numerical modeling predictions and laboratory 

measurements were made in a simulated fracture borehole set-up within a controlled flow 
simulator. The scanning colloidal borescope flowmeter (SCBFM) and advanced hydrophysical 



4 

logging (NxHpL�) tool were used to measure velocities and flow rate in a simulated fractured 
borehole in the flow simulator.  Particle tracking and mass flux measurements were observed and 
recorded under a range of flow conditions in the simulator.  Numerical models were developed to 
aid in the design of the flow simulator and predict the flow conditions inside the borehole.   

 
Results demonstrated that the flow simulator allowed for predictable, easily controlled, 

and stable flow rates both inside and outside the well.  The measurement tools agreed well with 
each other over a wide range of flow conditions.  The model results demonstrate that the 
Scanning Colloidal Borescope did not interfere with the flow in the borehole in any of the tests.  
The model is capable of predicting flow conditions and agreed well with the measurements and 
observations in the flow simulator and borehole.  Both laboratory and model results showed a 
lower limit of fracture velocity in which inflow occurs, but horizontal flow does not establish 
itself in the center of the borehole.  In addition, both laboratory and model results showed 
circulation cells in the borehole above and below the fracture horizon.  The length of the interval 
over which the circulating cells occurred was much larger than the interval of actual horizontal 
flow.  These results suggest that for the simple fracture geometry simulated in this study, 
horizontal flow can be predictable and measurable, and that this flow is representative of the 
larger, near-field flow system.  Additional numerical refinements and laboratory simulations of 
more robust, life-like fracture geometries should be considered. 

 
The preliminary conclusions of this work suggest the following: 1) horizontal flow in the 

fractured medium which is representative of the near-field flow conditions can be established in 
a wellbore; 2) this horizontal flow can be accurately measured and numerically predicted; 3) the 
establishment of directionally quantifiable horizontal flow is dependent on four parameters: 
borehole diameter, structure, permeability and the hydraulic gradient of the flowing feature; and, 
4) by measuring three of these four parameters, the fourth parameter can be numerically derived 
through computer simulations. 
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1.0 Introduction 
This study is the third phase of a multi-year evaluation and comparison of horizontal flow 

measurements in the fractured and karst setting.  The first phase involved a comparison of four 

different techniques in two karst settings with the results summarized by Wilson, et al., 1999.  

The conclusions of this report were that the particle tracking type measurements (fixed focal 

point colloidal borescope and acoustic Doppler flow meter) had a wide range of results, were not 

comparable with each other, not repeatable and varied considerably over short vertical distances.  

The hydrophysical logging (HPL) method continued to display its superior capability in 

identifying horizontal flow intervals and had comparable velocity results with the KV heat 

dilution device.  Based on these results, and the discovery of the Scanning Colloidal borescope 

developed at Lawrence Livermore National Laboratory, Phase II of this study was a focused 

field application of the HPL and SCBFM at Camp Crowder in Missouri.  Unlike the fixed focal 

point colloidal borescope deployed during phase one, the SCBFM can scan through a 500mm 

interval.  This was the first application of the SCBFM in the fractured karst environment and 

proved very enlightening.  By using HPL to locate the horizontal flow areas and then deploying 

the SCBFM, it was discovered that the horizontal flowing intervals were very thin (4-5cm) and 

of high velocity and consistent direction.  Another important discovery was the identification of 

swirling intervals above and below the identified fast pathway. These swirling cells were highly 

variable in direction and velocity, and sometimes consistently flowing at 180 degrees from the 

identified fast pathway.  These discoveries put the Phase I data into context for the first time.  

The importance of resolving the flow over an interval, as opposed to a fixed point, becomes 

paramount to accurately evaluating horizontal flow in a borehole in the fractured regime. 

After the success of Phase II, when the combined approach of HPL and the SCBFM was 

determined to accurately find and characterize horizontally flowing features, the question arose 

regarding how representative horizontal flow in a wellbore was to the surrounding fractured 

system.  This is a complex issue and begs the longstanding question; �How representative is 

anything in the borehole to the system as a whole?�   

As such, this phase of the study looked at a simple fracture, set in a known and 

controllable horizontal flowing environment, to simulate flow behavior in both a numerical and 

laboratory setting. 
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In addition, the effect of the scanning borescope itself on the flow field was modeled for 

several flow conditions and geometries.   

2.0 Laboratory Simulator Experimental Set-up 

2.1 Laboratory Simulator 

Based on the work of Drost (1967) and others, a laboratory scale horizontal flow chamber 

was constructed (Figure 2.1).  The objective of this chamber was to create a stable horizontal 

flowing condition in a porous medium.  The dimensions of the simulator were 3 ft wide by 4 ft 

deep by 7 ft long.  Two six inch reservoirs were located at each end such that the overall length 

was 8 feet, and such that water could be circulated in both directions through the chamber at a 

known flow rate with an associated observable horizontal gradient.   

Once the flow simulator was constructed and filled with sand, the actual permeability of 

the flow simulator was calculated to be 2.1E-9 m2.  The sand was a well-rounded, well-sorted 

coarse sand (8/16) with a bulk porosity of 34.5 %.  The permeability for this sand type is 

reported to be between 1.0E-9 and 1.0E-10 m2 (Bear et. al., 1968).   Actual calculation of 

permeability was performed by pumping at 9.0 gallons per minute (gpm) across the tank and 

generating a corresponding 0.074 m head difference. The tank was filled to 0.91 m prior to 

pumping.  Using Darcy�s Law, where Sd is specific discharge or Darcy velocity: 

 

L
hKVSd ∆==     (2.1) 

 

Since the flow simulator tank is 0.91 m wide and 2.2 m long, V = 6.92E-4m/s and L= 

2.2m. Therefore, for ∆h of 0.074 m, the hydraulic conductivity, K, is 2.06E-2 m/s.  Hydraulic 

conductivity was also calculated for a second pumping rate of 4.0 gpm with resulting K = 1.96E-

2 m/s.  

The following relationship was used to calculate permeability: 

 

   
ν
kgK =      (2.2) 
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Where k is the permeability, g is the gravitational constant, 9.81 m/s2 and ν is the 

kinematic viscosity of water, 1E-6m2/s.  Using 0.0206 m/s for the hydraulic conductivity gives 

2.1E-9 m2 for the permeability. 

 

 
 

Figure 2.1.  Laboratory simulator for horizontal flow.  Note the reservoirs at both ends and 

acrylic �fractured borehole� in center. 

2.2 Well Simulation 

To simulate a simple horizontal fracture regime, two slots were cut in a 4-inch acrylic 

tube that was installed in the center of the flow chamber.  These slots were 1.5 millimeter wide 

and diametrically opposed to each other with a 90 degree cut out on each side.  The openings 

were oriented perpendicular to the long axis (flowing direction) of the simulator. This was 

designed to simulate a simple horizontal fracture with a partial (50%) opening.  Please refer to 

Figure 2.2. 
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Four re-circulating rates were employed during horizontal flowing simulations and 

corresponded to similar flow rates used for the numerical modeling.  The scanning colloidal 

borescope and the advanced hydrophysical tool were deployed during these pumping rates. 

 

Figure 2.2.  Schematic of fracture used in study. 
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2.3 Scanning Colloidal Borescope Flow Meter (SCBFM) 

The scanning colloidal borescope flow meter is used to evaluate horizontal groundwater 

flow direction and velocity.  The SCBFM employs a CCD, magnetometer, light source and a 

remotely controlled, variable focal point lens mechanism to track colloidal sized particles (1-5 

microns).  Please refer to to Figure 2.3. 

 

 
 

Figure 2.3.  Schematic of Scanning Colloidal Borescope Flow Meter. 

Naturally occurring colloids move advectively with the native groundwater system.  By 

recording the output of the CCD and using advanced particle-tracking computer software, the 

compass direction and advective velocity of horizontal groundwater flow in a well can be 

evaluated.  The scanning feature allows a 500mm interval to be evaluated, as opposed to a single 
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fixed point. This scanning feature allows for a three dimensional evaluation such that swirling, 

non-representative flow cells can be identified and more importantly, "fast pathways" can be 

detected and characterized.  The SCBFM was originally conceived and developed by Lawrence 

Livermore National Laboratory (LLNL). 

2.4 Hydrophysical Logging 

RAS�s proprietary advanced hydrophysical logging method (NxHpL�) (Pedler and 

Urish, 1988, Pedler et.al. 1990, 1992, 1992a, and others, see reference section) is based on 

replacing the fluid column in a wellbore with deionized water and then profiling the induced 

changes in the electrical properties of the emplaced fluid column.  The electrical properties are 

profiled as a function of time with a proprietary, high-resolution fluid electrical conductivity 

(FEC) and temperature tool.  RAS�s multi-sensor tool employs up to eight FEC and temperature 

sensors in a variety of configurations.  For the project in the horizontal flow simulator, RAS 

employed a four-sensor array, with the sensors vertically spaced six inches apart and rotated 

horizontally at ninety degrees. Please refer to Figure 2.4 for details. 
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Figure 2.4.  Schematic of the RAS multi-sensor HPL tool with optional video subassembly. 
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2.5 Test Protocol 

The following briefly summarizes the test protocol: 

1) Measure and record background water level measurements at datum points. 

2) Start pumping at target pumping rate.  Measure and record instantaneous flow rate, total 

gallons, and depth to water at each datum point. 

3) Monitor the system until a steady state condition is observed. 

4) Start tool data collection and record data.  In the case of hydrophysical logging, flush 

wellbore with deionized water, then insert tool and take measurements.  

3.0 Results of SCBFM and Hydrophysical Logging 

3.1 Scanning Colloidal Borescope 

The SCBFM was deployed during 0, 0.4, 1.0, and 2.5 gpm flow tests.  The SCBFM was 

also applied during the 4.0 gpm flow test, but the in-hole velocity, estimated at over 5000µm/sec, 

exceeded the capability of SCBFM�s present software.  This is a software limitation and not an 

inherent limitation.  An example of the recorded data is given below in Figure 3.1. 
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Figure 3.1.  Example of SCBFM data, vertical green bars indicate time over which average 

velocity and direction was calculated.  Velocity is plotted in blue, with the axis on the left.  

Direction is plotted in magenta, with the axis on the right.  These results are presented in the 

center box.  Average period presented corresponds to a no pumping and no flow condition. 
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3.2 Hydrophysical Logging  

Hydrophysical logging was conducted at flow rates similar to those for the SCBFM and 

under similar, and previously described, procedures.   

An example of the hydrophysical logging results and analysis is given in Figure 3.2 

below. 

 

  

Figure 3.2.  Results of HPL in HX simulator, pumping rate of ~0.4 gpm with 0.02�/7� = 2.86e-3 

feet/feet or 0.28� in 100� horizontal hydraulic gradient. 
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A summary of the average flow velocity measured by the SCBFM and NxHpL� results 

is presented below in Table 3.2 

 

Table 3.2.  Summary of Hydrophysical Logging and SCBFM Results. 

 
 Hydrophysical Logging  SCBFM 
 Integral Analysis Dilution Analysis 

Pumping 
Rate 

(gpm) 

Flowrate 
(gpm)1 

Inlet Fracture 
Velocity 

(microns/sec) 

Flow velocity 
(ft/day)2 

Inlet Fracture 
Velocity 

(microns/sec)3 

 
Velocity at 
borehole 

center 
(microns/ 

sec) 
0.0     2 
0.4 0.003 1,590 2.66 9.50 55 
1.0     110 
1.3 0.005 2,647 6.04 21.6  
2.5 0.008 4,235 7.47 26.7 1600 
4.0 0.010 5,294 13.04 46.6  

 

4.0 Numerical Simulator � Computer Modeling 
Modeling studies were performed for all geometries and flow conditions used in the 

laboratory flow simulator experiments. The numerical models were generated using Adaptive 

Research�s Stormflow computational fluid dynamic software to simulate flow fields subject to 

specified initial and boundary conditions. The software was run on a standard desktop computer 

with an Intel 2.2 GHz processor running Windows 2000.  The availability of this cost effective 

computing platform allowed for this level of numerical simulations for the first time.   

Numerical computations were done for three basic purposes: 1) to determine appropriate 

design for flow simulator dimensions; 2) to determine the inlet velocity at the fracture into the 

open well from the porous media; 3) to determine the flow conditions inside the well with the 

borescope; and, 4) to evaluate the effect the SCBFM had on the horizontal flow. 

                                                 
1 Flowrate based on integral method of analysis (Lowe, et al, ..) 
2 Flow velocity based on dilution analysis (Drost, et al, 1967) 
3 Calculated on 3.57 microns/sec = 1 ft/day 
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4.1 Laboratory Flow Simulator 

Prior to construction, the RAS flow simulator was modeled to investigate the effects of 

the well and the sidewalls on the flow field. This was done using a porous media in the flow 

simulator with a permeability of 2.1E-9 m2.  Figure 4.1 shows the geometry and grid 

configuration with a 4-inch well in the simulator.  

 

 
 

Figure 4.1.  Isometric view of geometry and grid cells in the flow simulator with a 4-inch well. 

The grid spacing near the well was increased to gain detail of the flow field near the well. 

Results of these modeling tests demonstrated that the tank was designed with the appropriate 

length and width. 

Figure 4.2 shows the results of the pressure field across the simulator for a 3.25 cm head 

difference (4.0 gpm flow rate). The change in pressure was calculated to be 290 Pa.  This is very 

close to the 320 Pa calculated using ρg∆h for the change in pressure. 
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Figure 4.2.  Isometric view of the pressure field (Pa) in the flow simulator around a 4-inch well 

with a 4.0 gpm pumping rate. Flow is from left to right with the inlet in blue and the outlet in red. 

 

Figure 4.3 shows the results for the velocity field in the simulator for a pumping rate of 

4.0 gpm across the tank.  Figure 4.4 shows a close-up near the well using contours for the 

velocity. The results demonstrate that the effects on the flow field due to the well obstruction and 

sidewalls are very local. The effects of the well obstruction are not seen beyond 15 cm of the 

well (Figure 4.4). Thus, the flow simulator has sufficient dimensions for the tests to be 

performed.  In addition, a smaller model geometry and grid size can be used to determine the 

inlet velocity into the fractured well from the flow conditions in the flow simulator.  These issues 

are discussed in more detail in the following section. 
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Figure 4.3.  Isometric view of the velocity field (m/s) in the flow simulator around a 4-inch well 

with 4.0 gpm pumping rate.  Flow is from left to right with inlet in blue and outlet in red. 
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Figure 4.4.  Top view of the velocity field (m/s) in the flow simulator around a 4-inch well with 

4.0 gpm pumping rate.  Flow is from left to right. 

4.2 Inlet Velocity for Fractured Well in Flow Simulator 

The model results from Section 4.1 show that the well does not affect the flow field 

beyond 15 cm from the well boundary. Therefore, the geometry was reduced to this size and the 

grid cells were significantly reduced for the computations involving the velocity of the inlet 

fracture in the well.  The model for the reduced geometry and grid size is shown in Figure 4.5.  

Appendix 1 gives the grid cell number and spacing for the model.  The grid used in the well 

interior has 16 cells in the x-direction in order to gain a fine resolution near the inlet.  Since the 

fracture is 1.5 mm in the y-direction, only three cells were used in the fracture region (region 2). 
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Figure 4.5.  Isometric view of geometry and grid cells for reduced geometry. The inlet is blue 

and the outlet is red. 
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Figure 4.6.  Zoomed in, top view of geometry and grid cells for reduced geometry. Grid cells 

used to determine inlet velocity are checked with an X.  The thick gray line is the borehole wall 

and the blue line is for the fracture inlet/outlet.  Flow is from left to right. 

 

Results from the numerical model showed that flow was symmetric about the center of 

the well in the z-direction. Therefore, only four cells were monitored and recorded for the inlet 

velocity. Since the fractured well provides a preferential pathway with respect to the porous 

media, flow  accelerates towards the fracture in the porous media near the well.  Table 4.2 shows 
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the results for flow conditions in the porous media away from the effects of the fractured well 

and the increased velocity at the inlet for the range of flow rates used in the flow simulator.   

 

Table 4.2.  Flow through the porous media outside of the effects of the well and fracture inlet 

velocities for various pump rates. 

 

 

Pump Rate 

(gpm) 

Darcy Velocity (µm/s) 

(porous media) 

 

 

model        drawdown 

Linear Advective Velocity4 

(µm/sec) 

(porous media) 
 

model                  drawdown 

Average Fracture 

Inlet Velocity (µm/s) 

for cells 

10,19,8 / 10,10,9 / 

11,10,8 / 11,10,9 

0.4 3.1E+1 2.95E+0 8.99E+01 8.55E+0 2.1E+3 

1.0 7.7E+1  2.23E+02  4.7E+3 

1.3 1.15E+2 5.89E+0 3.33E+02 1.71E+1 7.0E+3 

2.6 1.9E+2 1.06E+1 5.51E+02 3.07E+1 1.0E+4 

4.0 3.1E+2 2.52E+2 8.99E+02 7.30E+2 1.65E+4 

 

In addition, Figure 4.7 illustrates the effect of the preferential pathway through the 

fracture and the increased velocity at the inlet compared to that found far away from the fracture. 

 

                                                 
4 Linear Advective Velocity = Sd/porosity 
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Figure 4.7.  View of flow field near inlet of fractured well. 

4.3 Scanning Colloidal Borescope Flow Meter (SCBFM) in Fractured 
Well 

The inlet velocities calculated in Section 4.2 are the input for the inlet conditions of the 

model used for the interior of the well. This includes the Scanning Colloidal Borescope placed in 

the well such that the center of the viewing range of the borescope is located at the fracture 

horizon. The model geometry and grid spacing is shown in Figure 4.8. 

 

Fr
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~80
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Figure 4.8.  Isometric view of model geometry and grid cells for flow of the well interior with the 

SCBFM. 

 

The geometry was created in cylindrical coordinates and a very fine grid was used in the 

region where the experimental tests by RAS were performed with the SCBFM.  The grid cell 

number and spacing for the interior well model are given in Appendix 1, Table A2. 

This model was run five times for each inlet condition calculated in Section 4.2.  The 

results are shown in Figures 4.9 through 4.13.  The results show that for the lowest flow rate (0.4 

gpm), the inlet velocity dissipates quickly in the open hole and there is little effect of the velocity 

from the fracture inlet on the flow in the well.  In the center of the well, where the SCBFM 

measures velocity and direction, the velocity is approximately 100 µm/s in the x-direction.  This 

is more than two orders of magnitude slower than the velocity at the fracture inlet.  However, at 

the highest flow rate (4.0 gpm), the effects of the fracture inlet pass well through the center of the 

well and the velocity in the center is approximately 5000 µm/s.  This is only three times slower 

than the fracture inlet velocity.  For the given conditions, the fracture inlet appears to have the 

S

nlet

L

ight 
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greatest impact on the center of the well at pump rates at or above 1.5 gpm in the flow simulator. 

Slower flow rates and associated inlet velocities dissipate in the open hole and their effects at the 

center of the hole are minimal. 

In addition, the model shows that the scanning borescope itself is not interfering with the 

flow field.  This can be seen in Figures 4.9 through 4.13 for the three-¼ inch light source 

attachments and in Figure 4.14 for the remainder of the borescope housing.  Figure 4.14 shows 

that the flow from the fracture inlet dissipates into vertical circulation cells without reaching the 

housing for the borescope sensor (top) and light source (bottom).  The tops of the circulation 

cells where the flow reverses direction across the center of the well are approximately 15 cm 

above and below the centerline.  This would suggest that when the SCBFM is deployed in a real 

borehole in a fractured environment, the depth of the tool should be adjusted such that the flow 

interval of interest is kept 150 mm from the top and bottom of the scanned interval. 
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Figure 4.9.  0.4 gpm pump rate. Color scale is for velocity in the x-direction in m/s. The fracture 

inlet is on the right and flow is from right to left.  Support rods (3) are shown through the center. 

The camera is above and the light source is below the fracture horizon. 
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Figure 4.10.  1.0 gpm pump rate. Color scale is for velocity in the x-direction in m/s. The 
fracture inlet is on the right and flow is from right to left.  Support rods (3) are shown through the 
center.  The camera is above and the light source is below the fracture horizon. 
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Figure 4.11.  1.5 gpm pump rate.  The color scale is for velocity in the x-direction in m/s. The 

fracture inlet is on the right and flow is from right to left. Support rods (3) are shown through the 

center.  The camera is above and light source is below the fracture horizon. 
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Figure 4.12.  2.5 gpm pump rate. The color scale is for velocity in the x-direction in m/s.  The 
fracture inlet is on the right and flow is from right to left.  Velocity depicted is for the center point 
and corresponding point of SCBFM measurement.  Support rods (3) are shown through the 
center.  The camera is above and light source is below the fracture horizon. 
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Figure 4.13.  4.0 gpm pump rate.  The color scale is for velocity in the x-direction in m/s.  The 

fracture inlet is on the right and flow is from right to left.  Support rods (3) are shown through the 

center.  The camera is above and the light source is below the fracture horizon. 

 



35 

 
 

 

Figure 4.14.  X-Z planar view tilted 30 degrees in the y-direction at 4.0 gpm pump rate. Color 

scale is for velocity in the x-direction in m/s. t and flow is from right to left.  
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4.4 Other Fracture Configurations 

Two additional modeling tests were performed to investigate the width of the fracture.  

The fracture height of 1.5 mm was kept the same and the width was changed to 10 degrees and 

180 degrees from the previous tests of 90 degrees.  These configurations could be representative 

of a parallel plate model equivalent fracture (180 degrees) and a channel-type equivalent fracture 

(10 degrees).  Results are shown in Figure 4.15 for an inlet velocity of 2E-3 m/s.  Results show 

that the velocity at the center is similar for the 180 and 90-degree case.  However, for the 10-

degree case, the effects of the inlet are very local to the location of the fracture.  A significant 

inlet velocity would have to be used to generate a velocity at the well center for the 10-degree 

fracture width. 

 
 

 
 
 
Figure 4.15.  Model results for 180, 90, and 10-degree fracture widths. Color scale is for 

velocity (m/s) in the x-direction. Note the color scale is different from that shown in Figures 4.9-

14. 
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5.0 Comparisons of Model and Experimental Results 
Both the Hydrophysics and Scanning Colloidal Borescope measurements allow for 

comparisons to modeling results. The hydrophysics comparison is primarily for the results 

regarding the fracture velocity and the SCBFM comparison is for the velocity at the center of the 

well. 

5.1 Fracture Inlet Velocity 

The hydrophysical measurements allow for an estimate of the total flow rate through the 

well. Since the flow in and out of the well was confined to the 1.5 mm inlet and outlet fractures, 

a velocity at the fracture could be calculated (Section 3.2).  The model calculated an inlet 

velocity from the method described in Section 4.2.  A comparison of the experimental and 

modeling results is shown in Table 5.1. 

 

Table 5.1.  Comparison of model and experimental results for inlet fracture velocity. 

 

Flow Rate Across Simulator 

(gpm) 

Hydrophysics Measurement 

from Integral Analysis (µm/s) 

 

Model Result (µm/s) 

0.4 1590 2100 

1.3 2647 6100 

2.5 4235 10000 

4.0 5294 16500 

 

The model results match closely at the low flow rate but are higher by a factor of 2 to 3 

for the larger flow rates. 

5.2 Velocity at the Center of the Well 

The Scanning Colloidal Borescope directly measures the velocity of the colloidal 

particles at the center of the well. The model described in Section 4.3 specifically calculates the 

conditions in the interior of the well based on a given inlet fracture velocity. Table 5.2 compares 
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the results for the model near the center of the well with that measured by the Scanning Colloidal 

Borescope. 

 

Table 5.2.  Comparison of model and experimental results for velocity at the center of the well. 

 

Flow Rate Across Simulator 

(gpm) 

Borescope Measurement 

(µm/s) 

 

Model Result (µm/s) 

0 2 0 

0.4 55 ~100 

1.0 110 ~1000 

1.5 - ~2000 

2.5 1600 ~3000 

4.0 - ~5000 
 

Again, the model results give larger values by about a factor of two.  This is similar to the 

results for the fracture velocity. 

The experiments also indicated that the flow through the center of the well was a very 

narrow jet. Visual observation of the colloids from the SCBFM demonstrated that the particles 

would travel faster on one side of the viewing area compared to the other side.  (Please see the 

video tape which accompanies this report.)  This observation is consistent with the model results 

shown in Figures 4.9-4.13 in which a narrow jet through the center is clearly visible at the higher 

flow rates. 

In addition, the scanning option on the SCBFM was used to investigate the flow field 

above and below the fracture at the higher flow rates (>2 gpm).  Visual observation noted 

virtually no flow immediately (>1 cm) above and below the fracture horizon.  At distances 

approximately 10 to 15 cm above and below the fracture horizon, flow of a lesser magnitude was 

observed in the opposite direction compared to that at the fracture.  This indicated the outer limit 

of a circulation cell within the well caused by the relatively high flow velocity entering the well 

at the fracture inlet.  Figure 4.14 also shows a circulation cell where the extent of the circulation 

is 15 cm above and below the fracture horizon. 
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6.0 Conclusions 
The results of this work show that: 1) the flow simulator is an excellent method for 

testing the Scanning Colloidal Borescope Flow Meter (SCBFM) and Hydrophysical tools under 

known, controlled conditions; 2) the measurements made by the two experimental tools are in 

good agreement at all flow rates tested; and, 3) the model is capable of predicting flow 

conditions in the simulator and interior of the well. The properties and flow rates used in the 

simulator provide a wide range of conditions in the well that are similar to those observed in 

field tests. The model predicted qualitatively similar results with regard to the observed flow 

characteristics in the well. This was noted by the prediction of the jet through the center of the 

well and the circulation cells above and below the fracture horizon.  However, the model over-

predicted both the fracture inlet velocity and velocity across the center of the well by about a 

factor of two.  Nonetheless, it is very encouraging that the model is consistently higher by the 

same factor. It appears that the origin of the difference between the model and the measurements 

is the calculation of the inlet fracture velocity.  A modification of the model used to calculate the 

inlet velocity could be done to: 1) create a higher grid resolution near the fracture; or, 2) create a 

geometry such that the grid cell center is at the edge of the well rather than using the cell 

immediately inside and outside the well.  If the inlet velocity as predicted by the model were 

reduced by a factor of two, the subsequent calculation of the center velocity in the well would 

likewise be reduced by the same multiple.  

The preliminary conclusions of this work suggest the following; 1) horizontal flow in the 

fractured medium which is representative of the near field flow conditions can be established in a 

wellbore; 2) that this horizontal flow can be accurately measured and numerically predicted; 3) 

that the establishment of directionally quantifiable horizontal flow is dependent on four 

parameters: borehole diameter, structure, permeability and the hydraulic gradient of the flowing 

feature; and, 4) by measuring three of these four parameters, the fourth parameter can be 

numerically derived through computer simulations. 

In summary, the results for the design, construction, and testing of the flow simulator 

along with the creation of the numerical models were very successful.  Future work could focus 

on making small improvements with regard to the model grid and geometry for the calculation of 

the inlet velocity.  Once this is accomplished and tested, further investigations of various fracture 
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configurations in the flow simulator could be done.  The model could be used to guide decisions 

on fracture configurations that would provide the most useful information.  This would lead to a 

much-improved understanding of the benefits and limitations of the tools used to measure 

properties in the borehole and relating them to the subsurface media.   
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APPENDIX 1 
Grid for CFD Models 

 

Grid for determining inlet velocities from porous media to well fracture: 

 

Table A.1. Grid cell number for each axis. Value in () for power of grid stretching. 

 

Region X Y Z 

1 10 (1.4) 8 7 

2 16 3 4 

3 10 (1.4) 8 7 
 

 

The grid generated for the model does not have a grid center at the inlet.  In order to 

determine the velocity at the inlet of the fracture, the grid cells immediately outside the fracture 

and inside the well were monitored and averaged once they converged.  Figure 4.6 shows the 

grid cells near the well and the cells that were used to determine the inlet velocity. 

 

Grid for interior of borehole with SCBFM placed inside: 

 

Table A.2. Grid cell number for each axis. Value in () for power of grid stretching. 

 

Region I J K 

1 36 2 7 

2 - 5 10 (1.4) 

3 - 7 (1.2) 60 (1.5) 

4 - - 5 

5 - - 7 (1.4) 
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The 1.5 mm fracture horizon was chosen at the center of region 3 in the geometry or cell 

numbers 5 through 14 (I) for the inlet and 23 through 32  (I) for the outlet; 14 (J); and 47 (K) and 

covered a 90-degree span for both the inlet and outlet. 
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